シラバス参照 |
講義概要/Course Information |
科目基礎情報/General Information |
授業科目名 /Course title (Japanese) |
微分積分学第一 | ||
---|---|---|---|
英文授業科目名 /Course title (English) |
Calculus Ⅰ | ||
科目番号 /Code |
|||
開講年度 /Academic year |
2011年度 | 開講年次 /Year offered |
1/2/3/4 |
開講学期 /Semester(s) offered |
前学期 | 開講コース・課程 /Faculty offering the course |
情報理工学部 |
授業の方法 /Teaching method |
講義 | 単位数 /Credits |
2 |
科目区分 /Category |
専門科目 - 理数基礎科目 - 必修科目 | ||
開講類・専攻 /Cluster/Department |
情報理工学部 | ||
担当教員名 /Lecturer(s) |
石田 晴久 | ||
居室 /Office |
東1-501 | ||
公開E-mail |
ishida@im.uec.ac.jp | ||
授業関連Webページ /Course website |
なし | ||
更新日 /Last update |
2011/02/17 17:51:46 | 更新状況 /Update status |
公開中 /now open to public |
講義情報/Course Description |
主題および 達成目標(2,000文字以内) /Themes and goals(up to 2,000 letters) |
各学科の専門科目を受講するにあたり,数学的なバックグラウンド(微分積分学と線形代数学)は不可欠である.微分積分学は,自然科学を語る「言葉」であり,その意味で現代の科学技術の基礎を支えている. 微分積分学第一では,1変数の微分積分の基礎的事項を学ぶ.内容的には,高校での微積分を発展させ,主に初等関数(多項式,三角関数,指数関数およびその合成関数,逆関数として得られる関数)に関する微積分の取り扱い(計算法,応用)を深める. (なお,高校で学んだ範囲の微積分に自信のない人は,別に「数学補習授業」が開講されているので,積極的に受講してほしい.) |
---|---|
前もって履修 しておくべき科目(1,000文字以内) /Prerequisites(up to 1,000 letters) |
(高校の微分積分) |
前もって履修しておくこ とが望ましい科目(1,000文字以内) /Recommended prerequisites and preparation(up to 1,000 letters) |
(高校の数学) |
教科書等(1,000文字以内) /Course textbooks and materials(up to 1,000 letters) |
教科書:三宅 敏恒 著『入門 微分積分』(培風館) 参考書:南・笠原・若林・平良 共著『明解 微分積分』(数学書房) 宮島 静雄 著『微分積分学I』(共立出版) 杉浦 光夫 著『解析入門I』(東京大学出版会) 小平 邦彦 著『解析入門I』(岩波書店) 松田 修 著 / 飯高 茂 監修『微分積分 基礎理論と展開』(東京図書) 野本 久夫・岸 正倫 共著『解析演習』(サイエンス社) |
授業内容と その進め方(2,000文字以内) /Course outline and weekly schedule(up to 2,000 letters) |
(a) 授業内容 第1回:内容紹介,実数 第2回:連続関数 第3回:初等関数,特に逆三角関数 第4回:関数の微分,合成関数・逆関数の微分公式 第5回:平均値の定理,関数の増減,ロピタルの定理 第6回:高次の導関数,曲線の凹凸,ライプニッツの定理 第7回:テーラーの定理,漸近展開 第8回:微分のまとめ,補足 第9回:中間試験とその解説 第10回:定積分と不定積分 第11回:置換積分と部分積分 第12回:いろいろな積分の計算法 第13回:広義積分 第14回:区分求積法,定積分の応用 第15回:積分のまとめ,補足 【注】講義の進度は多少前後することがある. (b) 授業の進め方 授業は基本的に板書によって進められる. |
実務経験を活かした 授業内容 (実務経験内容も含む) /Course content utilizing practical experience |
|
授業時間外の学習 (予習・復習等)(1,000文字以内) /Preparation and review outside class(up to 1,000 letters) |
授業時間外の学習なしに,講義中に講義内容のすべてを理解することは不可能であることを認識してほしい.授業時間外に,講義の復習をすると同時に,教科書の演習問題等を実際に解いてみる作業が求められる. |
成績評価方法 および評価基準 (最低達成基準を含む) (1,000文字以内) /Evaluation and grading (up to 1,000 letters) |
(a) 評価方法 ・数学演習第一で実施される2回の統一試験の成績(微積に対応する部分)50% ・各教員の講義での評点 50% (中間試験と期末試験の結果による) (但し、再履修学生は講義のみで評価する) (b) 評価基準 1変数の微積分(極限,微分,積分)の基本的計算法則を理解し,簡単な関数に対して適用できることを合格の最低基準とする. |
オフィスアワー: 授業相談(1,000文字以内) /Office hours(up to 1,000 letters) |
東1号館,501号室,月曜,5時限を原則とします.但し,この時間に都合がつかない場合には,数日前に電子メールで来室予約をとった上で居室を訪問されたい.電子メールでの質問は固くお断りします.当該授業の内容以外の質問や相談には応じませんので悪しからず. |
学生へのメッセージ(1,000文字以内) /Message for students(up to 1,000 letters) |
高等学校における微分・積分法の発展的な内容を学習します.つまり,高等学校での学習内容を前提にして講義が行われます.それらが不確かだと思う学生は是非積極的に「数学補習授業」に参加して下さい.補習の先生が丁寧に教えてくれるはずです.ここでつまずくと,後学期の講義「微分積分学第二」,「解析学」の学習にも支障をきたします. この講義は1変数関数の微分・積分の計算法を習得するのが主な目的ですが,理論的な側面も少なくありません.その箇所は初学者には難しく感じると思われますが,教科書の例題や節末問題,演習書の問題などを自分で考え,解いて行く過程で次第にわかってくるものですから余り気にせずにやってみて下さい.毎回,必ず復習することが大切です. まず,問題を自力で解いてみましょう.それで,もしも解けなかったのなら,何処かに原因があるはずです.例えば,解くのに必要な知識(計算法,定理の運用法等)の不足です.時間的な制限から授業で教えられるのは最低限の内容だけです.それ以外の問題演習等は学生諸君の自主性に委ねられていることも多いのが実情です.そのために図書館等に学習に必要な書籍があります.これらの書物を積極的に活用して理解するよう心掛けて下さい.それでも,どうしてもわからなければ,先生や先輩に質問すればよいでしょう.こういう地道な努力を期待します. |
その他 /Others |
なし |
キーワード /Keywords |
◆実数の連続性,上限,下限,逆三角関数 ◆合成関数の微分,逆関数の微分,対数微分法,平均値の定理,ロピタルの定理,連続微分可能,ライプニッツの公式,テーラーの定理,マクローリン展開 ◆定積分,不定積分,部分積分,置換積分,広義積分,区分求積法 |