|   シラバス参照 | 
| 講義概要/Course Information | 
| 科目基礎情報/General Information | 
| 授業科目名 /Course title (Japanese) | 物体認識論 | ||
|---|---|---|---|
| 英文授業科目名 /Course title (English) | Object Recognition | ||
| 科目番号 /Code | INS602a | ||
| 開講年度 /Academic year | 2021年度 | 開講年次 /Year offered | 3 | 
| 開講学期 /Semester(s) offered | 後学期 | 開講コース・課程 /Faculty offering the course | 情報理工学域 | 
| 授業の方法 /Teaching method | 講義 | 単位数 /Credits | 2 | 
| 科目区分 /Category | 専門科目 | ||
| 開講類・専攻 /Cluster/Department | Ⅰ類 | ||
| 担当教員名 /Lecturer(s) | 柳井 啓司 | ||
| 居室 /Office | 西9-701 | ||
| 公開E-mail | yanai@inf.uec.ac.jp | ||
| 授業関連Webページ /Course website | https://mm.cs.uec.ac.jp/object/ | ||
| 更新日 /Last update | 2021/10/02 14:15:06 | 更新状況 /Update status | 公開中 /now open to public | 
| 講義情報/Course Description | 
| 主題および 達成目標(2,000文字以内) /Themes and goals(up to 2,000 letters) | 画像データが大量に存在するようになり,画像の内容を計算機が理解する画像認識技術の重要性が増大している.そこで,本講義では,画像特徴表現,分類手法,深層学習による手法などの画像認識に関する基礎的な知識および実際のプログラミングの方法を習得することを目的とする. | 
|---|---|
| 前もって履修 しておくべき科目(1,000文字以内) /Prerequisites(up to 1,000 letters) | 基礎プログラミング演習 アルゴリズムとデータ構造並びに同演習 プログラミング演習 | 
| 前もって履修しておくこ とが望ましい科目(1,000文字以内) /Recommended prerequisites and preparation(up to 1,000 letters) | 線形代数. | 
| 教科書等(1,000文字以内) /Course textbooks and materials(up to 1,000 letters) | 特になし. | 
| 授業内容と その進め方(2,000文字以内) /Course outline and weekly schedule(up to 2,000 letters) | 講義では,画像認識の基礎であるパターン認識技術から最新の一般物体認識技術まで学部3年生にも理解できるように解説を行う.15回中8回は計算機室での演習を行う. 第1回:画像認識とは?イントロダクション.身の回りでの応用例から最新研究まで 第2回:画像認識の基礎.画像処理.エッジ検出.色ヒストグラムに基づく画像検索. 第3回:【演習1】MATLAB の基礎.顔検出,物体検出を試してみる. 第4回:【演習2】MATLABでの画像の取り扱い.色ヒストグラムに基づく画像検索. 第5回:様々な特徴量.輝度勾配ヒストグラム.局所特徴量.SIFT特徴量. 第6回:一般物体認識.BoF法による特徴ベクトル生成.k-Means法. 第7回:【演習3】局所特徴量の抽出.特定物体認識. 第8回:機械学習法.Nearest Neighbor法.線形/非線形SVM.NaiveBayes法. 第9回:【演習4】BoFベクトルの生成.k-Meansクラスタリング. 第10回:Deep Learningによる画像認識の基礎.畳みこみネット,誤差逆伝搬法. 第11回:Deep Learningのpretrained modelの利用と,fine-tuning. 第12回:【演習5】機械学習を用いた.一般物体認識.認識結果の評価方法. 第13回:【演習6】Deep Learningによる一般物体認識.Pretrained model. 第14回:【演習7】レポート課題説明(1):Web画像の自動収集. 第15回:【演習8】レポート課題説明(2):画像分類と,Web画像の再ランキング. | 
| 実務経験を活かした 授業内容 (実務経験内容も含む) /Course content utilizing practical experience | |
| 授業時間外の学習 (予習・復習等)(1,000文字以内) /Preparation and review outside class(up to 1,000 letters) | 予習は不要.復習としては,各回に学んだことを実際にプログラミングしてみることが望ましい.プログラミングに関しては,講義Webサイト上にサンプルコードや参考になるページへのリンクを用意する予定であるので,それを活用して復習をおこなうとよい. | 
| 成績評価方法 および評価基準 (最低達成基準を含む) (1,000文字以内) /Evaluation and grading (up to 1,000 letters) | MATLABプログラミングの演習問題と最終レポート課題,出席によって評価する.期末試験は実施しない. | 
| オフィスアワー: 授業相談(1,000文字以内) /Office hours(up to 1,000 letters) | メールによる.もしくは事前連絡のうえ,火曜日5限. | 
| 学生へのメッセージ(1,000文字以内) /Message for students(up to 1,000 letters) | 演習時に出題されるMATLABプログラミングの演習問題,期末試験の代わりに行う最終レポート課題は,大変手間・時間が掛かるため,多く空き時間を使った自主的な学習が必要である.「画像認識」「コンピュータによる物体認識」に興味があって,意欲的に取り組むことができる学生の受講を望む. | 
| その他 /Others | 当面はZoomでオンラインで授業を行う.URLは,授業HPで当日までに公開する. HPへのアクセスはUECアカウント認証が必要. | 
| キーワード /Keywords | 画像認識,物体認識,特徴抽出,機械学習,深層学習 |