|   シラバス参照 | 
| 講義概要/Course Information | 
| 科目基礎情報/General Information | 
| 授業科目名 /Course title (Japanese) | 画像認識システム特論 | ||
|---|---|---|---|
| 英文授業科目名 /Course title (English) | Advanced Image Recognition Systems | ||
| 科目番号 /Code | |||
| 開講年度 /Academic year | 2021年度 | 開講年次 /Year offered | 全学年 | 
| 開講学期 /Semester(s) offered | 後学期 | 開講コース・課程 /Faculty offering the course | 博士前期課程、博士後期課程 | 
| 授業の方法 /Teaching method | 講義 | 単位数 /Credits | 2 | 
| 科目区分 /Category | 大学院専門教育科目 - 専門科目Ⅱ | ||
| 開講類・専攻 /Cluster/Department | 情報学専攻 | ||
| 担当教員名 /Lecturer(s) | 柳井 啓司 | ||
| 居室 /Office | 西9-701 | ||
| 公開E-mail | yanai@inf.uec.ac.jp | ||
| 授業関連Webページ /Course website | https://mm.cs.uec.ac.jp/sys/ | ||
| 更新日 /Last update | 2021/10/02 14:14:30 | 更新状況 /Update status | 公開中 /now open to public | 
| 講義情報/Course Description | 
| 主題および 達成目標(2,000文字以内) /Themes and goals(up to 2,000 letters) | 画像情報システム論では,前半は講義で深層学習による画像認識の基礎理論について学び,後半では最新論文の輪読を通して最新研究の動向について学習する.さらに深層学習フレームワークを用いた画像認識プログラミングのレポート課題を通して,実際の深層学習を用いた画像認識プログラミングについて学ぶ. | 
|---|---|
| 前もって履修 しておくべき科目(1,000文字以内) /Prerequisites(up to 1,000 letters) | 線形代数 確率統計 物体認識論 Pythonによるプログラミング | 
| 前もって履修しておくこ とが望ましい科目(1,000文字以内) /Recommended prerequisites and preparation(up to 1,000 letters) | 人工知能 パターン認識 自然言語処理 データマイニング | 
| 教科書等(1,000文字以内) /Course textbooks and materials(up to 1,000 letters) | 特になし. 参考資料は授業HPを参照のこと. | 
| 授業内容と その進め方(2,000文字以内) /Course outline and weekly schedule(up to 2,000 letters) | 前半は講義形式,後半は輪講形式で行う. 受講者は必ず1回は,画像認識システムに関する英語の論文を読み,その内容を授業中にプレゼンテーションする.さらに,3回の深層学習に関するプログラミング課題に取り組み,レポートを提出することが必要である.プログラミング課題はPythonによるプログラミングを理解していることを前提する. 前半の講義の予定は以下の通り.深層学習以外の従来手法による画像認識(主に学部「物体認識論」の内容)は,初回にざっと説明し,それ以降は本講義では扱わない.後半は,最新の深層学習による画像認識の英語論文の輪読を行う. 1. Introduction on Deep Neural Network for image recognition 2. Elements of Deep Convolutional Neural Network: convolutional layer, pooling layer, fully connected layer, RNN, LSTM 3. Learning method: back propagation(BP), stochastic gradient descent, end-to-end training, differentiable components, multi-task learning 4. Computation of DCNN: computational complexity,computation with GPU, im2col operation and GEMM, implemetation of DCNN on mobile devices, weight compression 5. Common techniques: Dropout, Batch/weight normalization, He-init, data augmentation Representative DCNN acchitecture.AlexNet, NIN, VGG, GoogleNet, ResNet, ResNext, Densely Connected CNN usage of pre-trained model, fine-tuning. 6. Image generation network. Unpooling, fractional convolution. Generative Adversarial Network (GAN). Semi-supervised training with GAN, Adversarial training 7. Image transformation network. Conv-Deconv network. Conv-Deconv with Adversarial training 8. Object detection and segmentation. Faster RCNN, SSD, Fully Convolutional Network (FCN). Conv-Deconv for semantic segmentation. 9. BP-based methods: Visualization of activations and trained weights, Google Dream, style transfer, object saliency maps, feature map operation, reverse network for image reconstruction 10. Vision and Language: image captioning, Visual Question Answering, image-word embedding 11.Student presentation (1): architecture and theory for image classification 12.Student presentation (2): object detection 13.Student presentation (3): semantic segmenatation 14.Student presentation (4): image generation & transformation network 15.Student presentation (5): vision and language | 
| 実務経験を活かした 授業内容 (実務経験内容も含む) /Course content utilizing practical experience | |
| 授業時間外の学習 (予習・復習等)(1,000文字以内) /Preparation and review outside class(up to 1,000 letters) | 3つのプログラミング課題,輪読準備は授業時間外に行うことを前提とする. | 
| 成績評価方法 および評価基準 (最低達成基準を含む) (1,000文字以内) /Evaluation and grading (up to 1,000 letters) | 論文のプレゼンテーション,課題のレポート,出席で評価する.配点は,それぞれ,30点,50点,30点とする.出席回数が全授業回数の2/3に満たない場合は0点とする(単位は出さない). | 
| オフィスアワー: 授業相談(1,000文字以内) /Office hours(up to 1,000 letters) | 月曜日6限.不在の場合もあるので,できるだけ事前にメール連絡すること. 質問等は電子メールでも受け付ける. | 
| 学生へのメッセージ(1,000文字以内) /Message for students(up to 1,000 letters) | 深層学習技術の学習において重要なことは,「基本原理の理解」「実装と実験」「最新技術をフォロー」である.特に自習による「深層学習プログラミング」を重視し,最新の論文のネットワークをすぐにコード化できるようになることを目標に課題を出題する.なお,Pythonをマスターしている前提で課題を出題する. レポート課題および英語論文のプレゼンは作業に大変手間が掛かるので,画像認識システムを実際にプログラミングすることに対して意欲的に取り組むことができる学生の履修を希望する. | 
| その他 /Others | 当面はZoomでオンラインで授業を行う.URLは,授業HP内のUECアカウント認証ページで公開する. | 
| キーワード /Keywords | 深層学習,一般物体認識,画像マイニング,データマイニング,機械学習 |