電気通信大学 平成18年度シラバス

授業科目名	量子力学第一		
英文授業科目名	Quantum Mechanics I		
開講年度	2006年度	開講年次	3年次
開講学期	5 学期	開講コース・課程	昼間コース
授業の方法		単位数	2
科目区分	専門科目-学科専門科目-必	修科目	
開講学科・専攻	量子・物質工学科		
担当教官名	渡邊 信一		
居室	東6-521		

公開E-Mail	授業関連Webページ

【主題および達成目標】

微視的世界の記述と理解に不可欠な量子力学は21世紀当初に発見された。

現代生活を支える半導体や便利なカーナビも量子現象の数多い恩恵の例である。

現代物理学の根幹をなす量子現象の基礎原理を簡単なシュレーディンガー

方程式の解法を通して習得することを目指す。

【前もって履修しておくべき科目】

力学、微積分学、線形代数学

【前もって履修しておくことが望ましい科目】

解析力学、応用数理解析第一

【教科書等】

教科書

「量子力学Ⅰ」 江沢 洋 著 (裳華房)

参考書

電気通信大学 平成18年度シラバス

上級者向けの参考書: 「量子力学 1、2」 猪木 慶治,川合光 著 (講談社) 「量子力学概論」 グライナー 著 (シュプリンガー・フェアラーク東京) 「量子力学 I,川,川」 メシア 著 (東京図書) 「量子力学上下」 シッフ 著 (吉岡書店) 【授業内容とその進め方】 1.量子力学のはじまり 2. 粒子性と波動性 3. シュレーディンガー方程式 中間試験第一 3. 井戸型ボテンシャルと東縛状態 4. 矩形型パリアー・ボテンシャルと連続状態
「量子力学 1、2」 猪木 慶治,川合光 著 (講談社) 「量子力学概論」 グライナー 著 (シュブリンガー・フェアラーク東京) 「量子力学 1,川,川」 メシア 著 (東京図書) 「量子力学 上下」シッフ 著 (吉岡書店) 【授業内容とその進め方】 1. 量子力学のはじまり 2. 粒子性と波動性 3. シュレーディンガー方程式 中間試験第一
「量子力学概論」 グライナー 著 (シュブリンガー・フェアラーク東京) 「量子力学 I , II , III」 メシア 著 (東京図書) 「量子力学 上下」 シッフ 著 (吉岡書店) 【授業内容とその進め方】 1. 量子力学のはじまり 2. 粒子性と波動性 3. シュレーディンガー方程式 中間試験第一 3. 井戸型ポテンシャルと束縛状態
「量子力学」、II、III」メシア著 (東京図書) 「量子力学上下」シッフ著 (吉岡書店) 【授業内容とその進め方】 1. 量子力学のはじまり 2. 粒子性と波動性 3. シュレーディンガー方程式 中間試験第一 3. 井戸型ポテンシャルと束縛状態
「量子力学上下」シッフ著(吉岡書店) 【授業内容とその進め方】 1. 量子力学のはじまり 2. 粒子性と波動性 3. シュレーディンガー方程式 中間試験第一 3. 井戸型ポテンシャルと束縛状態
【授業内容とその進め方】 1. 量子力学のはじまり 2. 粒子性と波動性 3. シュレーディンガー方程式 中間試験第一 3. 井戸型ポテンシャルと束縛状態
 量子力学のはじまり 粒子性と波動性 シュレーディンガー方程式 中間試験第一 井戸型ポテンシャルと束縛状態
 2. 粒子性と波動性 3. シュレーディンガー方程式 中間試験第一 3. 井戸型ポテンシャルと束縛状態
3. シュレーディンガー方程式中間試験第一3. 井戸型ポテンシャルと束縛状態
中間試験第一 3. 井戸型ポテンシャルと束縛状態
3. 井戸型ポテンシャルと束縛状態
3. 井戸型ポテンシャルと束縛状態
4. 矩形型パリアー・ポテンシャルと連続状態
中間試験第二
5. 調和振動子
期末試験

電気通信大学 平成18年度シラバス

【成績評価方法及び評価基準(最低達成基準を含む)】 (a) 評価方法: 中間試験および期末試験の総合成績による。 (b) 評価基準: 以下の到達レベルを持って合格の最低基準とする。 (1) 波動関数、物理量の演算子、量子力学的期待値、定常状態等の 基本的概念が理解されていること。 (2) 束縛状態と連続状態の相違について理解していること。 (3) 1次元シュレーディンガー方程式の解き方を理解していること。 (4)調和振動子の固有エネルギーと固有関数を演算子を用いて 求められること。 【オフィスアワー:授業相談】 特に設けない。授業中または授業後に積極的に質問すること。 【学生へのメッセージ】 量子力学は現代における物性科学や原子・分子物理学の 根幹をなすものですから、本授業でその基礎をしっかり身に つけるようにしてください。 【その他】