シラバス参照

講義概要/Course Information
2025/04/24 現在

科目基礎情報/General Information
授業科目名
/Course title (Japanese)
線形代数学第一
英文授業科目名
/Course title (English)
Linear Algebra Ⅰ
科目番号
/Code
開講年度
/Academic year
2015年度 開講年次
/Year offered
1/2/3/4
開講学期
/Semester(s) offered
前学期 開講コース・課程
/Faculty offering the course
情報理工学部
授業の方法
/Teaching method
講義 単位数
/Credits
2
科目区分
/Category
専門科目
開講類・専攻
/Cluster/Department
情報理工学部
担当教員名
/Lecturer(s)
石田 晴久
居室
/Office
東1-501
公開E-mail
/e-mail
ishida@uec.ac.jp
授業関連Webページ
/Course website
なし
更新日
/Last update
2015/04/07 15:06:52 更新状況
/Update status
公開中
/now open to public
講義情報/Course Description
主題および
達成目標(2,000文字以内)
/Themes and goals(up to 2,000 letters)
 本講義では「行列」と「行列式」と呼ばれる概念を新たに導入し,その性質や計算法について述べる.「行列」は,単に数学のみに留まらず,広く理工学や情報学,統計的処理に至るまで多くの分野で活用されている重要な概念であり,本学で専門科目を受講するにあたり必須の内容である.この「行列」という概念は,中学・高校における数学学習の様々な局面で利用してきた「連立一次方程式」の解法を統一的に理解するための道具である.他方,「行列」は,高校までで学習してきた整数・有理数・実数といった数とは異なった演算法則(非可換性と零因子の存在)を持っている.これは平面上の拡大・縮小や回転移動という操作の持つ性質を一般化したものであると考えることができる.これらの観点から,高校までの「複素数平面」「ベクトル」などの学習内容との接続に十分配慮して講義を行う.
線形代数学第一では,線形代数学における最も基本的な計算技術の習得を目標とする.
具体的には,行列の演算(和・スカラー倍・積),基本変形と簡約化とそれを用いた連立一次方程式の解法,逆行列の計算,行列式の概念と性質,基本変形や余因子展開を用いた行列式の計算法を扱う.
前もって履修
しておくべき科目(1,000文字以内)
/Prerequisites(up to 1,000 letters)
(高校数学における平面・空間のベクトル)
前もって履修しておくこ
とが望ましい科目(1,000文字以内)
/Recommended prerequisites and preparation(up to 1,000 letters)
なし
教科書等(1,000文字以内)
/Course textbooks and materials(up to 1,000 letters)
教科書:木田 雅成 著『線形代数学講義』(培風館)
参考書:難易度の易しい順に個人的に推奨できる書籍のいくつかを挙げておく.
     硲  文夫 著『理工系の線形代数』(培風館) 具体例を通して行列を学べる
     中村  郁 著『線形代数学』(数学書房) 固有値・固有ベクトルの応用上の意義を解説
     雪江 明彦 著『線形代数学概説』(培風館) 行列式の幾何的意義に詳しい
     永田 雅宜 他著『理系のための線型代数の基礎』(紀伊國屋書店) 「東の小平,西の永田」で知られる,代数学の世界的泰斗,永田先生の(私の学生時代の)教科書
     齋藤 正彦 著『線型代数入門』(東京大学出版会) 色々な話題を紹介
     佐武 一郎 著『線型代数学』(裳華房) 和書では最難関な本(今読んでも難しい)
     山本 哲朗 著『行列解析の基礎 Advanced線形代数』(サイエンス社) 行列論の豊饒さ・奥深さに啓発されよう
     中神 祥臣・柳井 晴夫 共著『矩形行列の行列式』(丸善出版) 長方形行列の行列式(Cullis 行列式) に関する唯一の教科書
     D. C. Lay, Linear Algebra and Its Applications, 4th ed., Pearson, 2011.
     G. Strang, Introduction to Linear Algebra, 4th ed., Wellesley Cambridge Press, 2009.
授業内容と
その進め方(2,000文字以内)
/Course outline and weekly schedule(up to 2,000 letters)
(a) 授業内容

第1回:内容紹介・連立一次方程式と行列
第2回:行列の定義と演算
第3回:行列の演算法則
第4回:正則行列と逆行列
第5回:行列の簡約化と基本行列
第6回:連立一次方程式の解法
第7回:行列の階数と逆行列の計算法
第8回:連立一次方程式の解空間の性質
第9回:中間試験とその解説
第10回:行列式の導入と定義
第11回:行列式の多重線形性・交代性と基本変形
第12回:行列式の基本性質(正則性・転置・積)
第13回: 行列式の余因子展開
第14回:余因子行列と逆行列・クラメルの公式
第15回:特別な行列式および行列式の計算練習

【注】 講義の進度は多少前後することがある.
また,中間試験は進度によって省略されることがある.

(b) 授業の進め方

 授業は基本的に板書によって進められる.
実務経験を活かした
授業内容
(実務経験内容も含む)
/Course content utilizing practical experience
授業時間外の学習
(予習・復習等)(1,000文字以内)
/Preparation and review outside class(up to 1,000 letters)
 授業時間外の学習なしに,講義中に講義内容のすべてを理解し身につけることは不可能であることを認識してほしい.授業時間外に,講義の復習をすると同時に,教科書の演習問題等を実際に解いてみる作業が求められる.
成績評価方法
および評価基準
(最低達成基準を含む)
(1,000文字以内)
/Evaluation and grading
(up to 1,000 letters)
(a) 評価方法

・中間試験,期末試験,小テストなどによって総合的に評価する.

(b) 評価基準

 行列の簡約化を用いて連立一次方程式を解くことができること,行列の演算,逆行列,行列式の計算法を理解していることを基準とする.
オフィスアワー:
授業相談(1,000文字以内)
/Office hours(up to 1,000 letters)
 東1号館,501号室,水曜,5時限を原則とします.但し,この時間に都合がつかない場合には,数日前に電子メールで来室予約をとった上で居室を訪問されたい.電子メールでの質問は固くお断りします.当該授業の内容以外の質問や相談には応じませんので悪しからず.
学生へのメッセージ(1,000文字以内)
/Message for students(up to 1,000 letters)
 高等学校における数学B「ベクトル」の発展的な内容を学習します.つまり,高等学校での学習内容を前提にして講義が行われます.それらが不確かだと思う学生は是非積極的に「数学補習授業」に参加して下さい.補習の若い先生が丁寧に教えてくれるはずです.
 この講義は実数成分の一般的な行列(数を長方形のかたちに並べてベクトルを並列化したもの)の計算法とその連立1次方程式への応用法を習得するのが主な目的ですが,理論的な側面も多少あります.例えば,連立1次方程式が解けるための条件を行列の‘階数’という概念で与えることや,連立1次方程式を解く過程で自然に現れる‘行列式’という概念を一般的に定義すること,その性質や計算法(余因子展開)などがそうです.その箇所は初学者には難しく感じると思われますが,教科書の例題や節末問題,演習書の問題などを自分で考え,解いて行く過程で次第にわかってくるものですから,最初は余り気にせずにやってみて下さい.まずは,一般的な定義や定理,公式を具体的な問題で繰り返し使うことを通じて馴染んでみましょう.そのためには毎回,必ず復習することが大切です.
 客観的理解度を知るために,演習問題を自力で解いてみましょう.それで,もしも解けなかったのなら,何処かに原因があるはずです.例えば,解くのに必要な知識(計算法,定理の運用法等)の不足です.時間的な制約から授業で実際教えられるのは最低限の内容だけです.線形代数学第一用の問題演習科目として数学演習第一がありますが,それでも十分とはいえませんので,それ以外の問題演習等は学生諸君の自主性に委ねられているのが実情です.そのために附属図書館等に学習に有用な書籍があります.これらの書物を積極的に活用して理解するよう心掛けて下さい.それでも,どうしてもわからなければ,先生や先輩に質問すればよいでしょう.こういう地道な努力を期待します.何れにせよ,充分に時間をかけないと,数学だけでなくあらゆる意義のある学問はわかるはずの内容でもわからないことは確かです.
その他
/Others
なし
キーワード
/Keywords
◆行列とその演算 ◆正則行列 ◆行基本変形,簡約行列 ◆連立1次方程式 ◆逆行列 ◆行列の階数 ◆行列式 ◆余因子展開,余因子行列