シラバス参照

講義概要/Course Information
2025/06/28 現在

科目基礎情報/General Information
授業科目名
/Course title (Japanese)
現代数学入門B
英文授業科目名
/Course title (English)
Introduction to Modern Mathematics B
科目番号
/Code
開講年度
/Academic year
2016年度 開講年次
/Year offered
2/3/4
開講学期
/Semester(s) offered
前学期 開講コース・課程
/Faculty offering the course
情報理工学部
授業の方法
/Teaching method
講義 単位数
/Credits
2
科目区分
/Category
総合文化科目
開講類・専攻
/Cluster/Department
情報理工学部
担当教員名
/Lecturer(s)
榎本 直也
居室
/Office
東1-413
公開E-mail
/e-mail
enomoto-naoya@uec.ac.jp
授業関連Webページ
/Course website
http://www.enomoto-naoya.e-one.uec.ac.jp/2016lecture.htmlに作成予定
更新日
/Last update
2016/03/04 14:04:59 更新状況
/Update status
公開中
/now open to public
講義情報/Course Description
主題および
達成目標(2,000文字以内)
/Themes and goals(up to 2,000 letters)
 本講義では広く理工系・情報学において現れる「群・環・体」と呼ばれる代数系の有用性に触れてもらうことを目標とし,様々な具体例とともに基礎的な性質について述べる.
 「群」という考え方は、方程式の解の公式を支配する概念として生まれたが,その後,「対称性」を記述する概念として方程式の性質を調べるだけでなく,理工系・情報系を問わず多くの分野で用いられている.本講義では「対称性」に関する身近な観察から始めて,分子の基準振動や固有値問題への応用までを眺める.
 「環」は,中学・高校以来なじみ深い整数や多項式の持つ性質を抽象化した概念であり,「体」は,有理数・実数・複素数の持つ性質を抽象化して得られる概念である.環や体の概念は,グレブナー基底・暗号・符号理論など情報系の多くの分野で用いられる道具の基礎づけを与えている.本講義ではそうした応用についても簡単に触れつつ,「方程式の解の公式」を群と体の言葉で見直す「ガロア理論」やその応用についても触れる.
 本講義の目標は,群・環・体という代数系に触れ,より専門的に学習してもらうための動機づけを与えることである.個々の事実の正確な証明をつけることではなく,「群・環・体」の考え方や簡単な具体例などを自分の手で計算しながら実感をつかんでもらうことを目標とする.
前もって履修
しておくべき科目(1,000文字以内)
/Prerequisites(up to 1,000 letters)
なし
前もって履修しておくこ
とが望ましい科目(1,000文字以内)
/Recommended prerequisites and preparation(up to 1,000 letters)
1年生配当の数学科目(線形代数学第一、線形代数学第二、微分積分学第一、微分積分学第二、解析学)を履修しておくと理解が深まると思われるが、必ずしも履修していなくても理解できる部分が多い。
教科書等(1,000文字以内)
/Course textbooks and materials(up to 1,000 letters)
教科書は指定しない。(必要に応じて講義ノートなどを配布する。)
参考書:
金子 晃 著「応用代数学講義」(サイエンス社 2006年)
杉原 厚吉・今井 敏行 著「工学のための応用代数 (工系数学講座 4) 」(共立出版 1999年)

吉川 圭二 著「群と表現」(理工系の基礎数学 9)(岩波書店 1996年)
萩田 真理子 著「暗号のための 代数入門」(サイエンス社 2010年)
西田吾郎 著「数,方程式とユークリッド幾何: ガロア理論から折り紙の数学まで 」(京都大学学術出版会 2012年)

結城浩 著「数学ガール ガロア理論 (数学ガールシリーズ 5)」(ソフトバンククリエイティブ 2012年)
授業内容と
その進め方(2,000文字以内)
/Course outline and weekly schedule(up to 2,000 letters)
授業計画

[第1 回]対称性と群
[第2 回]群の定義と乗積表
[第3 回]群の作用と軌道分解
[第4 回]群の表現-群の影を観る-
[第5 回]群の表現の応用
[第6 回]剰余類の考え方-「同じ」とはどういうことか?-
[第7 回]整数の性質
[第8 回]多項式の性質-因数分解できるのはどんなとき?-
[第9 回]可換環とイデアル
[第10 回]可換環の応用
[第11 回]方程式と解の公式
[第12 回]体とその拡大
[第13 回]方程式のガロア群
[第14 回]定規とコンパスによる作図可能性
[第15 回]有限体とその応用-有限体上のベクトル空間とハミング符号-

注:講義で取り上げる内容は受講者の理解や興味などに応じて多少変更する場合もある。
実務経験を活かした
授業内容
(実務経験内容も含む)
/Course content utilizing practical experience
授業時間外の学習
(予習・復習等)(1,000文字以内)
/Preparation and review outside class(up to 1,000 letters)
講義中にExerciseをいくつか提示するので、それらを解いて理解を確かめたり、興味と関心に応じて参考書として挙げた本を読んでみることを推奨します。
成績評価方法
および評価基準
(最低達成基準を含む)
(1,000文字以内)
/Evaluation and grading
(up to 1,000 letters)
進度と話題の区切りに応じて,2,3回レポートを作成してもらい,その内容を用いて成績評価を行う.
オフィスアワー:
授業相談(1,000文字以内)
/Office hours(up to 1,000 letters)
居室にいる場合は対応します。不在の場合や時間を決めたい場合には事前にメールでアポイントを取ってください。
学生へのメッセージ(1,000文字以内)
/Message for students(up to 1,000 letters)
 1年生で学習する線形代数・微分積分・解析学の内容は、どの分野に進むとしても必ず必要になる理工系の基礎的な素養ですから、ある程度修行の意味も込めてみっちりやる必要があります。
 しかし、本講義で述べる「代数系」という考え方は、多くの分野でも利用されている反面、分野によって使う対象も使い方も様々です。この講義では、「修行」をするのではなく、広く代数系が利用される例をいろいろ眺めながら興味や関心の幅を広げつつ、専門分野でも使えるようにさらに学習を進めていくための手がかりを提供することが目標です。肩に力を入れず気軽に聞いてもらえるような内容を目指します。
その他
/Others
なし
キーワード
/Keywords
◆群、部分群、群の作用、軌道分解、群の表現、
◆環、イデアル、体、体の拡大、ガロア群、作図可能性、有限体
◆整数、多項式、解の公式、剰余類