シラバス参照

講義概要/Course Information
2025/06/09 現在

科目基礎情報/General Information
授業科目名
/Course title (Japanese)
知能システム
英文授業科目名
/Course title (English)
Intelligent Systems
科目番号
/Code
INS801s
開講年度
/Academic year
2019年度 開講年次
/Year offered
4
開講学期
/Semester(s) offered
後学期 開講コース・課程
/Faculty offering the course
情報理工学域
授業の方法
/Teaching method
講義 単位数
/Credits
2
科目区分
/Category
専門科目
開講類・専攻
/Cluster/Department
先端工学基礎課程
担当教員名
/Lecturer(s)
伊藤 毅志
居室
/Office
西9-809
公開E-mail
/e-mail
ito@cs.uec.ac.jp
授業関連Webページ
/Course website
なし
更新日
/Last update
2019/03/02 09:23:38 更新状況
/Update status
公開中
/now open to public
講義情報/Course Description
主題および
達成目標(2,000文字以内)
/Themes and goals(up to 2,000 letters)
人工知能は、パターン認識やコンピュータゲームなどへの応用で社会的にも注目を集めている。本講義ではその基盤技術である探索、機械学習について学ぶ。さらにデータからの知識発見、最適化問題に対するヒューリスティクス解法など人工知能がカバーする学門領域を広く学ぶ。人工知能が何であるかを把握し、その基本アルゴリズムを理解して説明できるようになることを到達目標とする。
前もって履修
しておくべき科目(1,000文字以内)
/Prerequisites(up to 1,000 letters)
アルゴリズム論第一、離散数学
前もって履修しておくこ
とが望ましい科目(1,000文字以内)
/Recommended prerequisites and preparation(up to 1,000 letters)
特になし
教科書等(1,000文字以内)
/Course textbooks and materials(up to 1,000 letters)
授業中に適宜資料を電子的に配布する。

参考書:
人工知能原理(コンピュータサイエンス教科書シリーズ)加納政芳、山田雅之、遠藤守共著(コロナ社)
授業内容と
その進め方(2,000文字以内)
/Course outline and weekly schedule(up to 2,000 letters)
第1回:ガイダンス:人工知能とは
第2回:ブラインド探索
第3回:深さ優先探索、幅優先探索
第4回:A*アルゴリズム、ゲーム木探索
第5回:その他の探索アルゴリズム
第6回:述語論理
第7回:知識表現
第8回:論理プログラミング
第9回:自然言語処理、画像処理
第10回:遺伝的アルゴリズム
第11回:強化学習
第12回:SVM
第13回:パーセプトロン
第14回:ニューラルネットワーク
第15回:DNN

講義中心だが、人工知能における問題解決は,自分で考えて、プログラムを組んでみて本当に理解できるものである。したがって,小テストや簡単な実習課題を数回課す予定である。また、受講者の理解度を見ながら、取り扱うトピックを変える可能性がある。
実務経験を活かした
授業内容
(実務経験内容も含む)
/Course content utilizing practical experience
授業時間外の学習
(予習・復習等)(1,000文字以内)
/Preparation and review outside class(up to 1,000 letters)
予習は不要である。しかし、各回の授業の時点で、前回までの講義内容を理解していることを前提として説明するので、復習はしっかり行う必要がある。
成績評価方法
および評価基準
(最低達成基準を含む)
(1,000文字以内)
/Evaluation and grading
(up to 1,000 letters)
学期末の定期試験(60%)と講義期間中に課すレポート課題(40%)で成績を評価する。

最低達成基準:講義の3つの主テーマ(探索、知識表現と推論、機械学習)に関して、それぞれ次のことができるようになること。
(1)ブラインド探索とヒューリスティックス探索の違いを説明できる。A*アルゴリズムがどのようなアルゴリズムであるかを詳しく説明できる。
(2)人工知能による知識表現と推論のメカニズムを説明できる。
(3) 機械学習における学習データ、テストデータの役割を理解し、簡単な学習アルゴリズムを自作できる。
オフィスアワー:
授業相談(1,000文字以内)
/Office hours(up to 1,000 letters)
オフィスアワーは特に設けない。質問は授業終了の前後に受け付けるのを基本とする。また、メールでの質問も歓迎する。
学生へのメッセージ(1,000文字以内)
/Message for students(up to 1,000 letters)
人工知能=深層学習のイメージの昨今ですが、人工知能はもっと広範囲の内容をカバーしています。そこで、本講義では人工知能がカバーする領域を広く浅く講義します。現実の応用を持った技術ばかりなので、本講義の習得はきっと皆さんの役になる時があると思います。
その他
/Others
講義は日本語で実施する.
キーワード
/Keywords
人工知能、探索、知識表現、問題解決と機械学習