シラバス参照

講義概要/Course Information
2024/06/20 現在

科目基礎情報/General Information
授業科目名
/Course title (Japanese)
線形代数学第二(クラス12)
英文授業科目名
/Course title (English)
Linear Algebra Ⅱ
科目番号
/Code
MTH202z
開講年度
/Academic year
2022年度 開講年次
/Year offered
1/2/3/4
開講学期
/Semester(s) offered
後学期 開講コース・課程
/Faculty offering the course
情報理工学域
授業の方法
/Teaching method
講義 単位数
/Credits
2
科目区分
/Category
専門科目
開講類・専攻
/Cluster/Department
情報理工学域
担当教員名
/Lecturer(s)
公文 雅之
居室
/Office
非常勤講師
公開E-mail
/e-mail
masayuki_kumon@smile.odn.ne.jp
授業関連Webページ
/Course website
なし
更新日
/Last update
2022/02/24 17:30:09 更新状況
/Update status
公開中
/now open to public
講義情報/Course Description
主題および
達成目標(2,000文字以内)
/Themes and goals(up to 2,000 letters)
数学のみならず広く理工学・情報学において,「線形性」あるいは「線形化」という考え方が重要である.線形代数学,特に本講義で述べる「ベクトル空間」と「線形写像」の概念は,複雑で多様な対象や現象の中に現れる「線形性」という性質を抽象化し,統一的に記述することを可能にする体系を提供し,これにより分野を問わず広く用いられ,本学で学ぶ専門科目を受講するにあたり必須の内容である.「ベクトル空間」の概念は、高校で学習する「ベクトル」の考え方とその性質を一般化したものであると同時に,高校で触れる「集合」に新たな構造を導入したものである.さらに「関数」の考え方の一般化である「写像」という集合同士の対応付けの考え方を「線形性」と結びつけることにより「線形写像」の考え方に至る.これらの観点から高校までの学習との接続に十分配慮して講義を行う.

線形代数学第二では,線形代数学における最も基本的な概念であるベクトル空間と線形写像の理解を目標とする.具体的には,ベクトル空間のもっとも基本的なモデルであり,高校までの平面・空間ベクトルの概念を高次元化した「数ベクトル空間」を中心に,ベクトルの一次独立性,基底と次元の概念,線形写像とその表現行列といった概念,行列や線形変換の固有値や対角化とその具体的な計算法を扱う.具体的な計算においては線形代数学第一における「行列」の計算技術が必須である.
前もって履修
しておくべき科目(1,000文字以内)
/Prerequisites(up to 1,000 letters)
線形代数学第一  
前もって履修しておくこ
とが望ましい科目(1,000文字以内)
/Recommended prerequisites and preparation(up to 1,000 letters)
数学演習第一,微分積分学第一
教科書等(1,000文字以内)
/Course textbooks and materials(up to 1,000 letters)
教科書:木田 雅成 著 「線形代数学講義」(培風館 2013年)
参考書(数学スタッフから推薦のあったテキスト):
 村上正康・佐藤恒雄・野澤宗平・稲葉尚志 共著 「教養の線形代数学(五訂版)」(培風館 2008年)
 中村 郁 著 「線形代数学」(数学書房 2007年)
 斎藤 正彦 著 「線型代数入門」(東京大学出版会 1966年)
 川久保 勝夫 著 「線形代数学(新装版)」(日本評論社 2010年)
 佐武 一郎 著 「線型代数学」(裳華房 1974年)
授業内容と
その進め方(2,000文字以内)
/Course outline and weekly schedule(up to 2,000 letters)
(a) 授業内容
第1回:内容紹介・集合と写像の考え方
第2回:ベクトル空間とその部分空間
第3回:ベクトルの一次独立・一次従属
第4回:ベクトル空間の基底と座標
第5回:ベクトル空間の次元
第6回:いろいろな部分空間の基底と次元
第7回:線形写像の導入と定義
第8回:線形写像の核と像
第9回:中間試験とその解説
第10回:線形写像の表現行列
第11回:基底変換と表現行列
第12回:固有値・固有ベクトルとその性質
第13回:表現行列の対角化
第14回:線形代数学の展望
第15回:線形代数学第二のまとめ
定期試験
【注】 講義の進度は前後することがある.また,中間試験は進度によって省略されることがある.
なお,第14回および第15回では,講義の進度や受講者の理解度に応じて,例えば,内積空間の正規直交基底や実対称行列の直交対角化,漸化式・微分方程式・二次形式への応用などの進んだ話題からトピックを選んで講義する場合がある.

(b) 授業の進め方
授業は基本的に板書によって進められる.
実務経験を活かした
授業内容
(実務経験内容も含む)
/Course content utilizing practical experience
授業時間外の学習
(予習・復習等)(1,000文字以内)
/Preparation and review outside class(up to 1,000 letters)
授業時間外の学習なしに,講義中に講義内容のすべてを理解することは不可能であることを認識してほしい.授業時間外に,講義の復習をすると同時に,教科書の演習問題等を実際に解いてみる作業が求められる.
成績評価方法
および評価基準
(最低達成基準を含む)
(1,000文字以内)
/Evaluation and grading
(up to 1,000 letters)
(a) 評価方法
中間試験・定期試験および練習問題の結果を,次のように総合評価する.
練習問題 2割 中間試験 3割 定期試験 5割

(b) 評価基準
ベクトル空間の部分空間・基底・次元の概念を理解し,同次連立一次方程式の解空間や行列から定まる線形写像の核や像空間などの基底や次元を求められること,線形写像の表現行列の考え方を理解し,具体的な例で実際に求められること,および,線形変換や行列の固有値・固有ベクトルを計算し,対角化を実行できることを合格の基準とする.
オフィスアワー:
授業相談(1,000文字以内)
/Office hours(up to 1,000 letters)
特に設けない.質問等は電子メールで受け付ける.
学生へのメッセージ(1,000文字以内)
/Message for students(up to 1,000 letters)
線形代数学が各専門分野で非常に豊かな応用をもつに至った背景の一つには,「線形性」という各分野に共通する概念のもとに抽象化されたこともあるが,授業や演習で具体的な例を通して一つずつ理解していけば,難しい内容ではない.
その他
/Others
学内連絡教員:伊東 (ito-hiroya@uec.ac.jp)
授業形態は対面式授業
再履修生は第1回授業開始日までに,担当教員に電子メールで受講を申し出て下さい.
キーワード
/Keywords
◆ベクトル空間 ◆1次独立・1次従属 ◆部分空間 ◆和空間 ◆ベクトル空間の基底と次元 ◆座標 ◆線形写像 ◆線形写像の表現行列 ◆線形写像の核と像 ◆基底変換行列 ◆固有値,固有ベクトル◆対角化