![]() ![]() |
講義概要/Course Information |
科目基礎情報/General Information |
授業科目名 /Course title (Japanese) |
ベクトルと行列第二 | ||
---|---|---|---|
英文授業科目名 /Course title (English) |
Introductory Linear Algebra Ⅱ | ||
科目番号 /Code |
MTH202s | ||
開講年度 /Academic year |
2022年度 | 開講年次 /Year offered |
1/2/3/4 |
開講学期 /Semester(s) offered |
後学期 | 開講コース・課程 /Faculty offering the course |
情報理工学域 |
授業の方法 /Teaching method |
講義 | 単位数 /Credits |
2 |
科目区分 /Category |
専門科目 | ||
開講類・専攻 /Cluster/Department |
先端工学基礎課程 | ||
担当教員名 /Lecturer(s) |
石田 晴久 | ||
居室 /Office |
東1-501 | ||
公開E-mail |
ishida@uec.ac.jp | ||
授業関連Webページ /Course website |
なし | ||
更新日 /Last update |
2022/10/05 13:15:04 | 更新状況 /Update status |
公開中 /now open to public |
講義情報/Course Description |
主題および 達成目標(2,000文字以内) /Themes and goals(up to 2,000 letters) |
理工系諸分野に現れる「線形性」という共通の考え方のもとに体系化された「線形代数学」は応用の豊かな数学である.ベクトルと行列第一・第二ではベクトルと行列の具体的な計算を通して線形代数学の基礎を学ぶ. ベクトルと行列第二では,線形代数における重要な概念である「行列の固有値・固有ベクトルと対角化,ベクトル空間,線形写像」の理解を目的とする.前半は,行列式の概念を通して,行列の固有値・固有ベクトルや対角化を理解する.後半は,線形代数の基本的な抽象概念であるベクトル空間に親しみ,部分空間,1次独立,基底,次元といった重要概念を具体的な計算を通して理解する.最後に,線形写像やその表現行列を通して,ベクトルと行列第一・第二で学習してきた項目の統一的な理解を目指す. |
---|---|
前もって履修 しておくべき科目(1,000文字以内) /Prerequisites(up to 1,000 letters) |
ベクトルと行列第一 |
前もって履修しておくこ とが望ましい科目(1,000文字以内) /Recommended prerequisites and preparation(up to 1,000 letters) |
基礎微分積分学第一 |
教科書等(1,000文字以内) /Course textbooks and materials(up to 1,000 letters) |
教科書:木田 雅成 著『線形代数講義』(培風館) 参考書:藤田 岳彦 他著『Primary 大学ノート よくわかる線形代数』(実教出版) 村上 正康 他著『教養の線形代数 六訂版』(培風館) 村上 正康 他著『演習 線形代数 改訂版』(培風館) 小林 正典・寺尾 宏明 共著『線形代数・講義と演習 改訂版』(培風館) 植野 義明 著『行列の数学』(講座 数学の考え方4,朝倉書店) 奥川 光太郎 著『線形代数学入門』(基礎数学シリーズ7,朝倉書店) 雪江 明彦 著『線形代数学概説』(培風館) |
授業内容と その進め方(2,000文字以内) /Course outline and weekly schedule(up to 2,000 letters) |
(a) 授業内容 第1回:ベクトルと行列第一の復習(1) 行列の簡約化と連立1次方程式の解法 第2回:ベクトルと行列第一の復習(2) 逆行列の計算 第3回:行列式の定義と基本的性質 第4回:行列式の計算演習 第5回:行列式の余因子展開と逆行列 第6回:行列の固有値と対角化(1) 固有値と固有ベクトル 第7回:行列の固有値と対角化(2) 行列の対角化 第8回:第3回~第7回の補足と演習 第9回:中間試験とその解説 第10回:ベクトル空間の定義と例,部分空間の定義 第11回:部分空間の性質と例 第12回:1次独立・1次従属 第13回:ベクトル空間, 部分空間の基底と次元(1) 第14回:ベクトル空間,部分空間の基底と次元(2) 第15回:第10回~第14回の補足と演習 なお、各回の内容は、学生の理解状況を考慮して変更されることがある. (b) 授業の進め方 授業は基本的に板書によって進められる. |
実務経験を活かした 授業内容 (実務経験内容も含む) /Course content utilizing practical experience |
|
授業時間外の学習 (予習・復習等)(1,000文字以内) /Preparation and review outside class(up to 1,000 letters) |
授業時間外の学習なしに,授業中に講義内容のすべてを理解することは不可能であることを認識してほしい.授業時間外に,講義の復習をするとともに,教科書の演習問題等を実際に解いてみる作業が求められる. |
成績評価方法 および評価基準 (最低達成基準を含む) (1,000文字以内) /Evaluation and grading (up to 1,000 letters) |
(a) 評価方法 定期試験を中心に,必要に応じてレポート・小テストなどを課し,それらの出来を総合的に評価する. (b) 評価基準 下記の項目の修得を合格の基準とする. ・行列式の定義や基本性質を理解した上で,行列式の計算問題が解けること. ・行列の固有値,固有ベクトルの概念を理解し,行列の対角化が出来ること. ・ベクトル空間の定義を理解し,部分空間の基底や次元が求められること. |
オフィスアワー: 授業相談(1,000文字以内) /Office hours(up to 1,000 letters) |
東1号館,501号室,水曜,5時限を原則とします.但し,この時間に都合がつかない場合には,数日前に電子メールで来室予約をとった上で居室を訪問されたい.電子メールでの質問は固くお断りします.当該授業の内容以外の質問や相談には応じられません. |
学生へのメッセージ(1,000文字以内) /Message for students(up to 1,000 letters) |
毎回,授業後によく復習して下さい.その際,演習問題を多く解いて下さい.問題を解くことで,講義で解説された概念の理解が進むはずです.ゆっくりで構いませんので時間をかけて取り組んでみましょう.指定の教科書でよくわからない場合には附属図書館や都内の大型書店で上記の参考書や類書に当たってみる手もあります. |
その他 /Others |
なし |
キーワード /Keywords |
◆固有値,固有ベクトル,対角化 ◆ベクトル空間,部分空間,1次独立,1次従属,基底,次元 ◆線形写像,表現行列 |