![]() ![]() |
講義概要/Course Information |
科目基礎情報/General Information |
授業科目名 /Course title (Japanese) |
情報データ解析論 | ||
---|---|---|---|
英文授業科目名 /Course title (English) |
Advanced Theory on Information Data Analysis | ||
科目番号 /Code |
|||
開講年度 /Academic year |
2023年度 | 開講年次 /Year offered |
全学年 |
開講学期 /Semester(s) offered |
前学期 | 開講コース・課程 /Faculty offering the course |
博士前期課程、博士後期課程 |
授業の方法 /Teaching method |
講義 | 単位数 /Credits |
2 |
科目区分 /Category |
大学院専門教育科目 - 専門科目Ⅱ | ||
開講類・専攻 /Cluster/Department |
情報・ネットワーク工学専攻 | ||
担当教員名 /Lecturer(s) |
○森田 啓義 | ||
居室 /Office |
|||
公開E-mail |
morita@uec.ac.jp | ||
授業関連Webページ /Course website |
https://classroom.google.com/u/1/c/NTE2NjQ1MzE1NTkx | ||
更新日 /Last update |
2023/04/05 21:27:05 | 更新状況 /Update status |
公開中 /now open to public |
講義情報/Course Description |
主題および 達成目標(2,000文字以内) /Themes and goals(up to 2,000 letters) |
[講義の目標] インターネットや大規模な計算機システムを流れる膨大なディジタル情報データの性質,ならびに,生成された情報データを処理するさまざまなアルゴリズムの仕組みとその性能について主に情報理論ならびに計算機科学の立場から論じる.それにより,習得した情報データの捉え方や処理アルゴリズムの性能評価法が,個々の事例へ柔軟に適用でき,また新たな応用へと発展できる力を養う. The aims of this course are to: - overview new trends of application networking services. - acquire systematic knowledge on algorithms and systems to generate various kinds of network data, including video stream. - learn the methodology and fundamentals of network information transfer. - develop an ability to create new applications of network. Topics to be discussed in the class will be picked up from a variety of fields such as multimedia streaming, traffic models, information data analysis, fundamentals of information transfer, optimization theory, image and signal processing, network coding, and tree structures on network. [講義内容] 今年度は,情報システムにおける最も基本的なデータ構造である文字列を取り上げる.文字列は有限アルファベットの要素を一列に並べたデータとして表現されるが,データ長が大きくなればなるほど,文字列処理の基本である検索,照合,保存といった処理をいかに効率良く行うかが重要な課題になる.これらの処理については古くから研究が進められているが,近年,計算量の観点から従来法を上回る優れた手法がつぎつぎに提案されている.この新たな展開に焦点をあててつつ,漸近的なアルゴリズムの解析法や自らのグループで開発したものも含め,代表的な文字列処理アルゴリズムを紹介する. In the 2023 summer semester, we will be concerned with a class of strings which is one of the most fundamental data structures in information systems. A string is defined as a series of elements in a finite set called alphabet. The most important issues related on strings is how to efficiently deal with most fundamental manipulations; string searching, string matching, and string sorting. There is a long history of these manipulations or algorithms of strings which have been developed by many researchers so far. And recently, new algorithms which are superior to the conventional ones have been successively proposed. With focusing these algorithms, some string processing algorithms including ones developed by our group will be discussed. |
---|---|
前もって履修 しておくべき科目(1,000文字以内) /Prerequisites(up to 1,000 letters) |
アルゴリズムとデータ構造の基礎知識があることが望ましいが,必須ではない. basic knowledges of algorithms and data structures would be preferable. |
前もって履修しておくこ とが望ましい科目(1,000文字以内) /Recommended prerequisites and preparation(up to 1,000 letters) |
アルゴリズムとデータ構造,情報理論 Algorithms and Data Structure, Information Theory. |
教科書等(1,000文字以内) /Course textbooks and materials(up to 1,000 letters) |
[教科書] とくになし.必要に応じて資料を配布する. No textbooks. Some materials will be distributed in the class. [参考書] G. Navarro, Compact Data Structures, Cambridge Univ. Press, 2016. T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. John Wiley & Sons., 2006. [演習] 適宜,簡単な演習を課す. Homework for a few exercises will be given regularly. |
授業内容と その進め方(2,000文字以内) /Course outline and weekly schedule(up to 2,000 letters) |
The lecture in this course, type(Ca), is mostly offered in Japanese; materials such as writing on the whiteboard, PPT slides and handouts are given in English. The plan of lectures is given as follows: [Contents] 01 Invitation to Information Data Analysis 02 Prefixes and Suffixes of Strings 03 Python Programming of Suffix Tries 04 Minimal Forbidden Words (MFWs) on Suffix Tries 05 Enumerating all MFWs on the Suffix Trie of a String 06 Suffix Tries to Suffix Arrays 07 Algorithm for Constructing Suffix Arrays 08 Suffix Arrays and LCP Arrays 09 Application of LCP Arrays for String Matching 10 A Fast Algorithm for Constructing MFW Arrays 11 Elements of Information Coding 12 Data Compression with Antidictionary (DCA) 13 Source Coding Theorems of DCA 14 ECG Analysis using Antidictionary 15 Final Report Writing The order of topics and their contents might be changed for the convenience of audience. |
実務経験を活かした 授業内容 (実務経験内容も含む) /Course content utilizing practical experience |
|
授業時間外の学習 (予習・復習等)(1,000文字以内) /Preparation and review outside class(up to 1,000 letters) |
毎回のレポート課題(プログラム演習含む)により,講義内容を復習し,理解を深めること. Homework for a few exercises with programming will be given in every week. |
成績評価方法 および評価基準 (最低達成基準を含む) (1,000文字以内) /Evaluation and grading (up to 1,000 letters) |
毎回の演習レポートの成績(6割)と最終レポート(4割)で評価 Home works (60%) and final exam (40%). |
オフィスアワー: 授業相談(1,000文字以内) /Office hours(up to 1,000 letters) |
Office hours will not be set due to the difficulty of finding a suitable location. However, If you have any questions about this lecture, feel free to ask me anytime. I am always ready to answer. |
学生へのメッセージ(1,000文字以内) /Message for students(up to 1,000 letters) |
The best way to understand data analysis algorithms is to write them in a programming language, in this case Python, and actually run them to see how they work. |
その他 /Others |
[その他] 受講にあたって、Pythonプログラムの読み方ができることが望ましいが必須ではない.PythonとJupyterを用いたプログラミング環境のインストール・使い方、ならびにJupyter上でのPythonプログラミングの紹介は講義の中で行う。毎回の講義で課せられるレポートに取り組めば、この講義が終わる頃にはPythonならびにJupyterについて一通り習得できる。 Students are expected to be able to read and write Python programs, but it is not required. Students will be able to master Python and Jupyter by the end of this course if they complete the reports assigned in each lecture. |
キーワード /Keywords |
Algorithm and Data Structures, Data Compression, Entropy, Minimal Forbidden Words, ECG arrhythmia Detection, DNA Analysis |